Benchmarking solution methods for parameter identification in dynamical systems
نویسندگان
چکیده
Abstract Accurate models are crucial for simulating, optimizing, and controlling real‐world processes. Parameter identification—the task of estimating the unknown parameters a dynamical system based on measurements—is challenging there exist various methods to approach it. Integration‐based methods, such as shooting full discretization, approximate model output by numerically solving system. Gradient matching other hand, avoid focus minimizing error between measurement slope state derivatives instead. All approaches have advantages disadvantages recipe which method is best in particular situation does not exist. In this paper, we present results benchmark comparing single shooting, multiple gradient using comprehensive database test problems. We investigate if notable difference performance one superior others. From benchmark, conclude that integration‐based outperform matching. While discretization exhibits robustness, provide higher precision. Additionally, observe finding an optimal configuration across diverse set parameter identification problems remains often requires fine‐tuning.
منابع مشابه
On Two-parameter Dynamical Systems and Applications
In this note some useful properties of strongly continuous two-parameter semigroups of operators are studied, an exponential formula for two-parameter semigroups of operators on Banach spaces is obtained and some applied examples of two-parameter dynamical systems are discussed
متن کاملSingle-shooting homotopy method for parameter identification in dynamical systems.
An algorithm for identifying parameters in dynamical systems is developed in this work using homotopy transformations and the single-shooting method. The equations governing the dynamics of the mathematical model are augmented with observer-like homotopy terms that smooth the objective function. As a result, premature convergence to a local minimum is avoided and the obtained parameter estimate...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولIcase Discrete Approximation Methods for Parameter Identification in Delay Systems
W e c o n s t r u c t approximation schemes f o r parameter i d e n t i f i c a t i o n problems i n which t h e governing state equation i s a l i n e a r f u n c t i o n a l d i f f e r e n t i a l e q u a t i o n of r e t a r d e d type. The b a s i s of t h e schemes i s t h e replacement of t h e parameter i d e n t i f i c a t i o n problem having a n i n f i n i t e dimensional s t a t e...
متن کاملon two-parameter dynamical systems and applications
in this note some useful properties of strongly continuous two-parameter semigroups of operators are studied, an exponential formula for two-parameter semigroups of operators on banach spaces is obtained and some applied examples of two-parameter dynamical systems are discussed
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings in applied mathematics & mechanics
سال: 2023
ISSN: ['1617-7061']
DOI: https://doi.org/10.1002/pamm.202300134